
V. Chandee et al. (2013) “Group Structures of Elliptic Curves Over Finite Fields,”
International Mathematics Research Notices, rnt120, 19 pages.
doi:10.1093/imrn/rnt120

Group Structures of Elliptic Curves Over Finite Fields

Vorrapan Chandee1,2, Chantal David3, Dimitris Koukoulopoulos4,
and Ethan Smith5

1Centre de recherches mathématiques, Université de Montréal, PO Box
6128, Centre-ville Station, Montréal, Québec, Canada H3C 3J7,
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It is well known that if E is an elliptic curve over the finite field Fp, then E(Fp)�
Z/mZ × Z/mkZ for some positive integers m,k. Let S(M, K) denote the set of pairs

(m,k) with m ≤ M and k≤ K for which there exists an elliptic curve over some prime

finite field whose group of points is isomorphic to Z/mZ × Z/mkZ. Banks, Pappalardi,

and Shparlinski recently conjectured that if K ≤ (log M)2−ε , then a density zero propor-

tion of the groups in question actually arises as the group of points on some elliptic

curve over some prime finite field. On the other hand, if K ≥ (log M)2+ε , they conjectured

that a density 1 proportion of the groups in question arises as the group of points on

some elliptic curve over some prime finite field. We prove that the first part of their

conjecture holds in the full range K ≤ (log M)2−ε , and we prove that the second part
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2 V. Chandee et al.

of their conjecture holds in the limited range K ≥ M4+ε . In the wider range K ≥ M2, we

show that at least a positive density of the groups in question actually occurs.

1 Introduction

Let E be an elliptic curve over Fp, and denote by E(Fp) its set of points over Fp. It is

well known that E(Fp) admits the structure of an abelian group. It is then natural to ask

for a description of the groups that arise this way as p runs through all primes and E

through all curves over Fp. This question was first addressed by Banks, Pappalardi, and

Shparlinski [2]. Below we reproduce part of the discussion from [2].

The first relevant property is that the size of E(Fp) can never be very far from

p+ 1. Indeed, if #E(Fp)= p+ 1 − ap, then Hasse proved that |ap| ≤ 2
√

p. Setting

x− = x + 1 − 2
√

x = (
√

x − 1)2 and x+ = x + 1 + 2
√

x = (
√

x + 1)2,

for each x ≥ 1, this is equivalent to saying that #E(Fp) ∈ (p−, p+). It follows from the work

of Deuring [7] that, for any integer N satisfying p− < N < p+, there exists an elliptic curve

E/Fp with #E(Fp)= N. Solving the inequalities for p allows us to conclude that, given a

positive integer N, there is a finite field Fp and an elliptic curve E/Fp with #E(Fp)= N if

and only if there is a prime p∈ (N−, N+). However, this result does not take into account

the actual group structure of E(Fp).

The second relevant property is that, as an abstract abelian group, E(Fp) has at

most two invariant factors. In other words, we may write

E(Fp)� Gm,k := Z/mZ × Z/mkZ

for some unique positive integers m,k. Refining the ideas already present in the work of

Deuring, one can argue that there is an elliptic curve E/Fp with E(Fp)� Gm,k if and only

if N = m2k∈ (p−, p+) and p≡ 1 (mod m). Arguing as before allows us to conclude that,

given a group Gm,k of order N = m2k, there is a finite field Fp and an elliptic curve E/Fp

with E(Fp)� Gm,k if and only if there is a prime p≡ 1 (mod m) in the interval (N−, N+).

The latter condition is equivalent to the assertion that there is a prime of the form

p= km2 + jm + 1 with | j|< 2
√

k; see Corollary 2.2.

The above characterization gives some interesting consequences. Note that,

when k is very small, it is unlikely that there is a finite field Fp and a curve E/Fp such

that E(Fp)� Gm,k simply because the interval (N−, N+) is too short. For example, there

is no curve over Fp such that E(Fp)� Z/11Z × Z/11Z, since none of the three integers

122 − 11,122,122 + 11 is prime. Other examples of groups not occurring are given by

Banks et al. [2].
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Group Structures of Elliptic Curves Over Finite Fields 3

In order to study the question of which groups Gm,k occur as group structures of

elliptic curves over Fp from an average point of view, the authors of [2] defined

S(M, K)= {m ≤ M,k≤ K : there is a prime p and a curve E/Fp with E(Fp)� Gm,k}.

They proved the following result for the cardinality of S(M, K).

Theorem 1.1 (Banks et al. [2]). Let M ≥ 2 and K ≥ 1. Then, for every fixed K, we have

#S(M, K)	K
M

log M
.

If M ≤ K43/94−ε , then

#S(M, K)
 MK

log K
.

Finally, if M ≤ K1/2−ε, then

#S(M, K)
 MK

(log K)2
. �

Moreover, the authors of [2] conjectured the following.

Conjecture 1.2 (Banks et al. [2]).

#S(M, K)=
⎧⎨
⎩o(MK) if K ≤ (log M)2−ε,

MK(1 + o(1)) if K ≥ (log M)2+ε . �

The motivation behind the above conjecture can be explained by a simple heuris-

tic. An integer n is prime with probability about 1/ log n. For Gm,k to be the group of a

curve E over some finite field, we need at least one of the integers n= km2 + jm + 1 with

| j|< 2
√

k to be prime. If we assume that these events occur independently of each other,

the probability that none of the integers n= km2 + jm + 1, | j|< 2
√

k, is prime is about

(
1 − 1

log(m2k)

)4
√

k

.

This quantity becomes less than 1 as soon as
√

k
 log(m2k). In particular, if k≥
(log m)2+ε , then we expect with probability 1 that km2 + jm + 1 is prime for some

j ∈ (−2
√

k,2
√

k). One can make the even bolder guess that if k≥ (log m)2+ε and k is large

enough, then there is always some j ∈ (−2
√

k,2
√

k) for which km2 + jm + 1 is prime.

This question is completely out of reach given current techniques, as we do not even

know whether there are primes in every interval of the form (x, x + x0.524) with x large
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4 V. Chandee et al.

enough. (The best result known, due to Baker et al. [1], is that (x, x + x0.525) contains

primes for every sufficiently large x.)

In this paper, we improve upon Theorem 1.1. Our first result is that the first part

of Conjecture 1.2 holds for M, K in the predicted range.

Theorem 1.3. Let M ≥ 2 and K ≥ 1. Then we have that

#S(M, K)	 MK3/2

log M
.

In particular, if K ≤ (log M)2−ε for some fixed ε > 0, then

#S(M, K)= oε(MK) as M → ∞. �

Remark 1.4. The proof of Theorem 1.3 begins in the same way as the proof given in [2]

for the first assertion of Theorem 1.1. The main difference is that we explicitly calculate

the dependence on K. Calculation of this dependence relies on the ability to approx-

imate the value of L(1, χ) by a very short Euler product for most characters χ ; see

Lemma 3.3. �

We also prove that the second part of Conjecture 1.2 holds for a restricted range

of M and K.

Theorem 1.5. Fix A≥ 1 and ε ∈ (0,1/3]. If M ≤ K1/4−ε , then

#S(M, K)= MK + Oε,A

(
MK

(log K)A

)
.

If, in addition, the Riemann hypothesis for Dirichlet L-functions is true, then the above

estimate holds for M ≤ K1/2−ε . �

Finally, we show that a lower bound of the correct order of magnitude holds

unconditionally in the range M ≤ K1/2.

Theorem 1.6. For 1 ≤ M ≤ K1/2, we have that

#S(M, K)
 MK. �

Notation

Given an integer n, we let P +(n) and P −(n) denote its largest and smallest primes factors,

respectively, with the notational conventions that P +(1)= 1 and P −(1)= ∞. As usually,
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Group Structures of Elliptic Curves Over Finite Fields 5

τ, μ, φ, andΛ denote the divisor, the Möbius, the totient, and the von Mangoldt function,

respectively. Furthermore, we let π(x; q,a) be the number of primes up to x that are

congruent to a (mod q) and

ψ(x; q,a)=
∑

n≡a (mod q)

Λ(n).

The letters p and 	 always denote prime numbers. Finally, we write f 	a,b,... g if there is

a constant c, depending at most on a,b, . . ., such that | f | ≤ cg, and we write f 
a,b,... g if

f 	a,b,... g and g 	a,b,... f .

2 Preliminaries and Cohen–Lenstra Heuristics

In this section, we explain how the existence of an elliptic curve over a prime finite

field with a given group structure is equivalent to the existence of a prime in a certain

interval with a given congruence condition. Some of the results and arguments of this

section are very similar to [2, Section 3], but we reproduce them here for the sake of

completeness. The first lemma is a result of Rück [11], who used the work of Deuring,

Waterhouse, and Tate–Honda to characterize those groups which actually occur as the

group of points on elliptic curves over finite fields.

Lemma 2.1 (Rück). Let N =∏
	 	

h	 be a possible order #E(Fp) for an elliptic curve E/Fp,

that is, N ∈ (p−, p+). Then all the possible groups E(Fp) with #E(Fp)= N are

Z/phpZ ×
∏
	 �=p

(Z/	b	Z × Z/	h	−b	Z),

where b	 is an arbitrary integer satisfying 0 ≤ b	 ≤ min (v	(p− 1), �h	/2�), and v	(α) is the

highest power of 	 dividing α. �

As a corollary of the above lemma, we have the following result, which is

[2, Lemma 3.5].

Corollary 2.2. Let m and k be integers. There is a prime p and a curve E over Fp such

that E(Fp)� Gm,k if and only if there is a prime p≡ 1 (mod m) in the interval

Im2k := (km2 − 2m
√

k + 1,km2 + 2m
√

k + 1),

or, equivalently, if and only if there is a prime p= km2 + jm + 1 with | j|< 2
√

k. �
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6 V. Chandee et al.

Proof. Suppose that there exists an elliptic curve E over Fp such that E(Fp)� Gm,k. As

mentioned in the introduction, we must have that N = m2k= #E(Fp) ∈ (p−, p+). Solving

for p as in the introduction gives that p∈ (N−, N+)= Imk2 . Since the m-torsion points

are contained in E(Fp) and since the Weil pairing is surjective, Fp must contain the mth

roots of unity, which is equivalent to saying that p≡ 1 (mod m).

Conversely, suppose that there is a prime p∈ Im2k such that p≡ 1 (mod m), and let

N = km2. It is easy to check that |p+ 1 − N| ≤ 2
√

p, that is to say that N is an admissible

order. Writing N = km2 =∏
	 	

h	 , we immediately see that v	(m)≤ �h	/2�. Furthermore,

since p≡ 1 (mod m), we also have that v	(p− 1)≥ v	(m) for each 	 | m. Thus, we may

take b	 = v	(m) in Lemma 2.1 for all 	 | m. So, in particular, h	 − b	 = v	(m)+ v	(k), and we

conclude that

Gm,k =
∏
	

(Z/	v	(m)Z × Z/	v	(m)+v	(k)Z)

is an admissible group. This completes the proof of the corollary. �

Remark 2.3. Using Corollary 2.2, we readily find that

#S(M, K)=
∑

m≤M

∑
k≤K

I(m,k),

where

I(m,k) :=
⎧⎨
⎩1 if there exists a prime p∈ Im2k such that p≡ 1 (mod m),

0 otherwise. �

The fact that the groups Gm,k are more likely to occur when m is small is in

accordance with the general philosophy of the Cohen–Lenstra heuristics, which predict

that random abelian groups “naturally” occur with probability inversely proportional to

the size of their automorphism groups. That is, the presence of many automorphisms

decreases the frequency of occurrence. In particular, those groups that are “nearly

cyclic” (m relatively small) should be the most likely to occur, and those groups that

are “very split” (m relatively large) should be the least likely to occur. This is what we

observe in Theorems 1.3, 1.5, and 1.6. Indeed, the “very split” groups occur with density

zero, and the “nearly cyclic” groups occur with density 1.

In order to see that the probability of occurrence of the groups Gm,k is really in

correspondence with the weights suggested by the Cohen–Lenstra heuristics, one should

count the number of times a given group Gm,k occurs as E(Fp), and not only if it occurs.
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Group Structures of Elliptic Curves Over Finite Fields 7

More precisely, given a group G of order N and a prime p, let

Mp(G)= #{E/Fp : E(Fp)� G}.

The quantity in question then is the sum

M(G) :=
∑

N−<p<N+
Mp(G).

Using the proper generalization of Deuring’s work, M(G) can be related to a certain

average of Kronecker class numbers; see [12], for example. It is shown in [6] that, under

a suitable hypothesis for the number of primes in short arithmetic progressions,

M(Gm,k)

4
√

N/ log N
∼A K(Gm,k) · #Gm,k

#Aut(Gm,k)
· N3/2 (N = m2k,m ≤ (log k)A,k→ ∞), (2.1)

where K(Gm,k) is nonzero and uniformly bounded for all integers m and k. So we see

that the average frequency of occurrence of groups of elliptic curves over finite fields is

compatible with the Cohen–Lenstra heuristics.

As we mentioned above, the results of [6] are conditional under some hypoth-

esis for the number of primes in short arithmetic progressions because the intervals

(N−, N+) are so short that even the Riemann hypothesis does not guarantee the exis-

tence of a prime. Nevertheless, it is possible to obtain unconditional results displaying

the Cohen–Lenstra phenomenon, by showing that the asymptotic in (2.1) is an upper

bound for all groups G, and a lower bound for most of the groups G (modulo constants).

This work is in progress [4]. The proof of the lower bound for most of the groups G

has similarities with the proof of Theorem 1.5 of the present paper and, in particular, it

requires the generalization of Selberg’s theorem about primes in short arithmetic pro-

gressions due to the third author [9], but it involves more technical difficulties, as one

needs to combine this with the arguments of [6].

3 Auxiliary Results

In this section, we collect some technical results that will be needed to prove the the-

orems. First, we state the fundamental lemma of the combinatorial sieve (see, e.g., [13,

Theorem 3, p. 60]), which will be used in the proof of Theorem 1.3. Given a finite set of

integers A and a number y≥ 1, we set

S(A, y)= #{a∈A : P −(a) > y}.
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8 V. Chandee et al.

As is customary, we assume that there is a multiplicative function ρ and a number X

such that, for every integer d,

#{a∈A : a≡ 0 (mod d)} = X · ρ(d)
d

+ Rd,

for some real number Rd, which we think of as an error term. Then we have the following

result.

Lemma 3.1. Let A, ρ, X, and {Rd : d∈ N} be as above. If ρ(p)≤ min{2, p− 1} for all

primes p, then we have that

S(A, y)= X
∏
	≤y

(
1 − ρ(	)

	

){
1 + O

(
u−u/2)}+ O

⎛
⎝ ∑

d≤yu, P +(d)≤y

μ2(d)|Rd|
⎞
⎠ ,

uniformly for all y≥ 1 and u≥ 1. �

The next lemma will be used in the proof of Theorem 1.3.

Lemma 3.2. Fix ε > 0 and let χ be a nonprincipal character mod q. For every y≥ 1, we

have that ∏
	≤y

(
1 − χ(	)

	

)
	ε q1/2+ε . �

Proof. Mertens’s estimate implies that

∏
	≤y

(
1 − χ(	)

	

)
	 q1/2+ε ∏

exp{q1/2+ε}<	≤y

(
1 − χ(	)

	

)
.

Moreover, by the discussion in [5, p. 123], we have that

∑
n≤x

Λ(n)χ(n)	ε

x

log x
(x ≥ exp{q1/2+ε}), (3.1)

using the trivial bound β < 1 − c/(q1/2 log q) for the Siegel zero provided by the class

number formula. Partial summation then implies that

log

⎧⎨
⎩

∏
exp{q1/2+ε }<	≤y

(
1 − χ(	)

	

)⎫⎬
⎭= −

∑
n>1

	|n⇒ exp{q1/2+ε}<	≤y

Λ(n)χ(n)

nlog n

= −
∑

exp{q1/2+ε}<n≤y

Λ(n)χ(n)

nlog n
+ O(1)	 1,

which completes the proof of the lemma. �
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Group Structures of Elliptic Curves Over Finite Fields 9

The next lemma, which is essentially due to Elliott, allows us to bound the value

of L(1, χ) by a very short product for most quadratic characters χ .

Lemma 3.3. Let δ ∈ (0,1] and Q ≥ 3. There is a set Eδ(Q)⊂ Z ∩ [1, Q] of size 	 Qδ such

that if χ is a nonprincipal, quadratic Dirichlet character modulo some q ≤ Q, whose

conductor does not belong to Eδ(Q), then

∏
y<	≤z

(
1 − χ(	)

	

)

δ 1 (z≥ y≥

√
log Q). �

Proof. We borrow from the proof of [8, Proposition 2.2], which is essentially due to

Elliott. Without loss of generality, we may assume that Q is large enough. By Theorem 1

in [10], for every σ0 ∈ [ 4
5 ,1], Q ≥ 2, and T ≥ 1, there are 	 (Q2T)2(1−σ0)/σ0(log Q)14 primitive

characters of conductor below Q whose L-function has a zero in the region {s = σ + it ∈
C : σ ≥ σ0, |t| ≤ T}. Let Eδ(Q) be the set of conductors corresponding to these exceptional

characters with σ0 = 1 − δ/12 ≥ 11/12 and T = Q3. If χ is a Dirichlet character mod q ∈
[1, Q] whose conductor is not in Eδ(Q), then L(s, χ) has no zeroes in {s = σ + it ∈ C : σ ≥
1 − δ/12, |t| ≤ Q3}. So, by [5, Equation (17), p. 120] applied with T = min{Q3, x}, we find

that

∑
n≤x

Λ(n)χ(n)	 x1−δ/12 log2 x + x log2 x

Q3
+ log2 Q 	δ

x

log x
+ log2 Q (2 ≤ x ≤ eQ).

The above estimate also holds for x ≥ eQ by (3.1). Together with partial summation, this

implies that

log

⎧⎨
⎩
∏

y<	≤z

(
1 − χ(	)

	

)⎫⎬
⎭= −

∑
	|n⇒y<	≤z

Λ(n)χ(n)

nlog n
= −

∑
y<n≤z

Λ(n)χ(n)

nlog n
+ O(1)	δ 1, (3.2)

for z≥ y≥ log2 Q, that is to say, the lemma does hold in this range of y and z. Finally, if√
log Q ≤ y< log2 Q, then setting w= min{z, log2 Q}, we find that

∏
y<	≤z

(
1 − χ(	)

	

)
=

∏
y<	≤w

(
1 − χ(	)

	

) ∏
w<	≤z

(
1 − χ(	)

	

)

δ 1,

by (3.2) and Mertens’s estimate, and the lemma follows. �

Next, we state the Bombieri–Vinogradov theorem [3, 14, 15], which will be used

to prove Theorem 1.6.
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10 V. Chandee et al.

Lemma 3.4 (Bombieri–Vinogradov). Let A> 0 be fixed. Then there exists a B = B(A) > 0,

depending on A, such that

∑
q≤x1/2/(log x)B

max
y≤x

(a,q)=1

∣∣∣∣π(y; q,a)− li(y)

φ(q)

∣∣∣∣	 x

(log x)A
. �

Finally, in order to prove Theorem 1.5, we need the following short interval ver-

sion of the Bombieri–Vinogradov theorem, due to the third author [9].

Lemma 3.5. Fix ε > 0 and A≥ 1. For x ≥ h≥ 2 and 1 ≤ Q2 ≤ h/x1/6+ε , we have that

∫2x

x

∑
q≤Q

max
(a,q)=1

∣∣∣∣ψ(y + h; q,a)− ψ(y; q,a)− h

φ(q)

∣∣∣∣ dy	 xh

(log x)A
.

If, in addition, the Riemann hypothesis for Dirichlet L-functions is true, then the above

estimate holds when 1 ≤ Q2 ≤ h/xε . �

4 Proof of Theorem 1.3

By Remark 2.3, we readily have that

#S(M, K)≤
∑
k≤K

∑
| j|<2

√
k

Sk, j, (4.1)

where

Sk, j := #{m ≤ M : km2 + jm + 1 is prime}.

Using the combinatorial sieve to bound Sk, j, one immediately obtains as in [2] that, for

any fixed K, #S(M, K)	K M/ log M. Keeping track of the dependence on j and k of the

upper bound for Sj,k, we prove Theorem 1.3.

In the notation of Lemma 3.1, let A= {km2 + jm + 1 : m ≤ M}, and note that

#{a∈A : a≡ 0 (mod d)} = #{m ≤ M : km2 + jm + 1 ≡ 0 (mod d)}

= M · ρk, j(d)

d
+ O(ρk, j(d)),

where

ρk, j(d) := #{c ∈ Z/dZ : kc2 + jc + 1 ≡ 0 (mod d)}.

 at C
oncordia U

niversity on June 27, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Group Structures of Elliptic Curves Over Finite Fields 11

The Chinese Remainder Theorem implies that ρ j,k is a multiplicative function. Moreover,

by a straightforward computation, we find that

ρk, j(	)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k − j

2

)2

if 	= 2,

1 +
(

j2 − 4k

	

)
if 	 � k and 	 �= 2,

(
j2

	

)
if 	 | k,

for all primes 	. Since Sk, j ≤ S(A, y)+ y for all y, applying Lemma 3.1 with y= M1/2 and

u= 1 yields the estimate

Sk, j 	 M
∏
	≤y

(
1 − ρk, j(	)

	

)
+

∑
d≤M1/2

μ2(d)|ρk, j(d)| + M1/2

	 M
∏

	|k,	≤y

⎛
⎜⎜⎝1 −

(
j2 − 4k

	

)
	

⎞
⎟⎟⎠ ∏
	�k, 	≤y

⎛
⎜⎜⎝1 −

1 +
(

j2 − 4k

	

)
	

⎞
⎟⎟⎠+ M1/2 log M

	 M

log M
· k

φ(k)
·
∏
	≤y

⎛
⎜⎜⎝1 −

(
j2 − 4k

	

)
	

⎞
⎟⎟⎠+ M1/2 log M.

This implies that

#S(M, K)	 M

log M

∑
k≤K, j<2

√
k

k

φ(k)

∏
	≤y

⎛
⎜⎜⎝1 −

(
j2 − 4k

	

)
	

⎞
⎟⎟⎠+ M1/2K3/2 log M.

Observing that j2 − 4k∈ [−4K,−1] for j and k as above, we fix d∈ [1,4K] and seek

a bound for the sum

Td :=
∑

k≤K, | j|<2
√

k
j2−4k=−d

k

φ(k)



∑
k≤K, | j|<2

√
k

j2−4k=−d

∏
	|k

(
1 + 1

	

)
.

First, note that

∏
	|k, 	>

√
log K

(
1 + 1

	

)
	

∏
	|k, 	>log K

(
1 + 1

	

)
	 exp

⎧⎨
⎩

∑
	|k, 	>log K

1

	

⎫⎬
⎭≤ exp

{
#{	|k}
log K

}
	 1,
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12 V. Chandee et al.

by Mertens’s estimate and the fact that k has at most log k
log 2 distinct prime factors. There-

fore,

∏
	|k

(
1 + 1

	

)
	

∏
	|k, 	≤

√
log K

(
1 + 1

	

)
=

∑
a|k

P +(a)≤
√

log K

μ2(a)

a
.

So

Td 	
∑

P +(a)≤
√

log K

μ2(a)

a

∑
k≤K, | j|<2

√
k

a|k, j2−4k=−d

1 ≤
∑

P +(a)≤(log K)1/2

μ2(a)

a

∑
| j|<2

√
K

4a| j2+d

1

	
∑

P +(a)≤(log K)1/2

μ2(a)

a
· τ(a)

(√
K

a
+ 1

)
	

√
K,

since a≤ eπ(
√

log K) 	 √
K for all square-free integers a with P +(a)≤√log K. Conse-

quently,

#S(M, K)	 M
√

K

log M

∑
d≤4K

∏
	≤y

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠+ M1/2K3/2 log M.

Using Lemma 3.3 on truncated products of L-functions with δ = 1
4 and Q = 4K, we find

that there is a set E of O(K1/4) integers in [1,4K] such that if d∈ [1,4K] and the conductor

of
(−d

·
)

is not in E , then

∏
w1<	≤w2

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠
 1 (w2 ≥w1 ≥

√
log(4K)).

So, for such a d we find that

∏
	≤y

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠


∏
	≤z

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠ , (4.2)
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where z= min{y,
√

log(4K)}. For the exceptional d’s, we write −d= −a2d1, where d1

denotes the conductor of
(−d

·
)

, and note that

∏
	≤y

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠	 a

φ(a)

∏
	≤y

(
1 −

(−d1
	

)
	

)
	 a

φ(a)
|d1|3/4,

by Lemma 3.2. Hence,

∑
d≤4K

cond(( −d
· ))∈E

∏
	≤y

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠≤

∑
d1∈E

∑
1≤|a|≤√

4K/|d1|

∏
	≤y

⎛
⎜⎜⎝1 −

(−d1a2

	

)
	

⎞
⎟⎟⎠

	
∑
d1∈E

∑
1≤|a|≤√

4K/|d1|

a

φ(a)
|d1|3/4

	
∑
d1∈E

|d1|1/4
√

K 	 K1/4 · K1/4 ·
√

K = K.

The above relation and (4.2) then imply that

#S(M, K)	 M
√

K

log M

∑
d≤4K

∏
	≤z

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠+ MK3/2

log M
. (4.3)

In order to control the above sum, we proceed by expanding the product to a sum and

inverting the order of summation. We have

∑
d≤4K

∏
	≤z

⎛
⎜⎜⎝1 −

(−d

	

)
	

⎞
⎟⎟⎠=

∑
P +(a)≤z

μ(a)

a

∑
d≤4K

(−d

a

)
.

If a= 1, the inner sum is 4K + O(1); else, it is 	 a. So

∑
d≤4K

∏
	≤z

(
1 −

(−d
	

)
	

)
	 K +

∑
P +(a)≤z

μ2(a)= K + 2π(z) ≤ K + 2π(
√

log(4K)) 	 K.
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14 V. Chandee et al.

Inserting the last estimate into (4.3), we obtain the inequality

#S(M, K)	 MK3/2

log M
,

which completes the proof of Theorem 1.3.

5 Proof of Theorem 1.3

Define

R(M, K)= {M/2<m ≤ M, K/2< k≤ K : there is no prime p≡ 1 (mod m) in Im2k}.

First, we prove an intermediate result for the cardinality of R(M, K).

Theorem 5.1. Fix A≥ 1 and ε ∈ (0,1/6]. If M ≤ K1/4−ε , then

#R(M, K)	ε,A
MK

(log K)A
.

If, in addition, the Riemann hypothesis for Dirichlet L-functions is true, then the above

estimate holds when M ≤ K1/2−ε . �

Proof. We prove both parts of the theorem simultaneously. Set h= M
√

K and

E(y,h; q,a)=
∣∣∣∣ψ(y + h; q,a)− ψ(y; q,a)− h

φ(q)

∣∣∣∣ ,
and note that if the pair (m,k) ∈ R(M, K), then

E((m
√

k − 1)2,h; m,1)
 h

φ(m)
≥ h

m



√
K.

Consequently,

#R(M, K)	 1√
K

∑
M/2<m≤M

∑
K/2<k≤K

E((m
√

k − 1)2,h; m,1).

Next, observe that (m
√

k − 1)2 ∈ J := [M2K/10,M2K]. We cover the interval J by

O((M2K)1−λ) subintervals Jr of length (M2K)λ each, where λ ∈ [1/4,1/2) is a fixed

parameter to be chosen later. If (m
√

k − 1)2 ∈ Jr, then, for every y∈ Jr, we have that
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|E(y,h; m,1)− E((m
√

k − 1)2,h; m,1)| ≤ #{n∈ Jr ∪ (Jr + h) : n≡ 1 (mod m)}

	 1 + (M2K)λ

m

 (M2K)λ

M
,

since M ≤ K1/2 and λ≥ 1
4 . So, if we let meas(Jr) denote the length of the interval Jr, then

E((m
√

k − 1)2,h; m,1)= 1

meas(Jr)

∫
Jr

E(y,h; m,1)dy + O
(
(M2K)λ

M

)

	 1

(M2K)λ

∫
Jr

E(y,h; m,1)dy + (M2K)λ

M
,

and consequently

#R(M, K)	 1√
K

∑
M/2<m≤M

∑
Jr

(
1

(M2K)λ

∫
Jr

E(y,h; m,1)dy + (M2K)λ

M

) ∑
K/2<k≤K

(m
√

k−1)2∈Jr

1.

For every fixed m ∈ [M/2,M] and every fixed interval Jr, there are at most 1 +
O((M2K)λ/M2) values of k with (m

√
k − 1)2 ∈ Jr. Since

(M2K)λ

M2

 1 ⇐⇒ M 	 Kλ/(2−2λ),

by choosing λ ∈ [1/4,1/2) appropriately in terms of ε, we obtain that M ≤ K1/2−ε implies

that 1 + O((M2K)λ/M2)= O((M2K)λ/M2). Therefore, there are at most O((M2K)λ/M2)

values of k with (m
√

k − 1)2 ∈ Jr, and we deduce that

#R(M, K)	 1√
K

∑
M/2<m≤M

∑
Jr

(
1

(M2K)λ

∫
Jr

E(y,h; m,1)dy + (M2K)λ

M

)
(M2K)λ

M2

≤ 1

M2
√

K

∑
M/2<m≤M

∫ M2 K

M2 K/20
E(y,h; m,1)dy + O(M2λK1/2+λ). (5.1)

If M ≤ K1/4−ε , then we have

M2 ≤ M
√

K

(M2K)1/6+ε/2 = h

(M2K)1/6+ε/2 ,

and we can apply the Lemma 3.5 to obtain that

∑
M/2<m≤M

∫ M2 K

M2 K/20
E(y,h; m,1)dy	 M2Kh

(log K)A
= M3K3/2

(log K)A
. (5.2)
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16 V. Chandee et al.

Similarly, if M ≤ K1/2−ε , then

M2 ≤ M
√

K

(M2K)ε/2
= h

(M2K)ε/2
.

So, if the Riemann hypothesis for Dirichlet L-functions holds, then Lemma 3.5 implies

that (5.2) holds in this case too. Inserting this relation into (5.1), we deduce that

#R(M, K)	ε,A
MK

(log K)A
+ M2λK1/2+λ 	ε,A

MK

(log K)A
,

since λ< 1
2 and M ≤ K1/2−ε . This completes the proof of Theorem 5.1. �

Proof of Theorem 1.5. Let ε, M, and K be as in the statement of Theorem 1.5. Clearly,

#{m ≤ M, k≤ K : there is no prime p≡ 1 (mod m) in Im2k} ≤
∑

2a≤2M,2b≤2K

#R(2a,2b).

If 2b ≤ K1−ε , then we use the trivial bound #R(2a,2b)≤ 2a+b. Otherwise, we have that

2a−1 ≤ M ≤
⎧⎨
⎩K1/4−ε ≤ 2b(1/4−ε/2) if M ≤ K1/4−ε,

K1/2−ε ≤ 2b(1/2−ε/2) if M ≤ K1/2−ε,

and so Theorem 5.1 implies that #R(2a,2b)	ε,A 2a+b/bA. Consequently,

#{m ≤ M, k≤ K : there is no prime p≡ 1 (mod m) in Im2k}

	A

∑
2a≤2M

2b≤K1−ε

2a+b +
∑

2a≤2M
K1−ε<2b≤2K

2a+b

bA
	ε,A

MK

(log K)A
.

The above estimate and Remark 2.3 complete the proof of Theorem 1.5. �

6 Proof of Theorem 1.6

Note that, as a direct consequence of Corollary 2.2 and the fact that I1 = (0,4), the primes

2 and 3 are always contained in S(M, K). In particular, #S(M, K)≥ 2 and hence we may

assume without loss of generality that K is large enough. Also, we may assume that M

is an integer, so that the interval (3M/4,M] always contains integers.
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From Remark 2.3, we have that

#S(M, K)=
∑

m≤M

∑
k≤K

I(m,k).

Now, note that

I(m,k)≥ φ(m) log(4
√

k)

8m
√

k
· #{p∈ Im2k : p≡ 1 (mod m)},

by the Brun–Titchmarsh inequality. Therefore, we deduce that

#S(M, K)
 log K√
K

∑
3M/4<m≤M

K/5<k≤K

φ(m)

m

∑
p∈Im2k

p≡1 (mod m)

1

≥ log K√
K

∑
M2 K/4<p<M2 K/3

∑
3M/4<m≤M
p≡1 (mod m)

φ(m)

m

∑
K/5<k≤K

p∈Im2k

1, (6.1)

by switching the order of summation and restricting p in the interval (M2K/4,M2K/3].

Fix p and m as in (6.1) and note that if k is an integer for which p∈ Im2k, then we neces-

sarily have that K/5< k≤ K. So

∑
K/5<k≤K

p∈Im2k

1 =
∑

k∈Z : p∈Im2k

1 = #
{

k∈ Z :
p− 2

√
p+ 1

m2
< k<

p+ 2
√

p+ 1

m2

}



√
p

m2



√
K

M
,

since

4
√

p

m2
>

4
√

M2K/4

M2
= 2

√
K

M
≥ 2,

by our assumption that M ≤ √
K. Consequently,

#S(M, K)
 log K

M

∑
M2 K/4<p<M2 K/3

∑
3M/4<m≤M
p≡1 (mod m)

φ(m)

m

= log K

M

∑
3M/4<m≤M

φ(m)

m

(
π(M2K/3; m,1)− π(M2K/4; m,1)

)

= log K

M

⎛
⎝ ∑

3M/4<m≤M

φ(m)

m

li(M2K/3)− li(M2K/4)

φ(m)
+ E

⎞
⎠ , (6.2)

 at C
oncordia U

niversity on June 27, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


18 V. Chandee et al.

where

E =
∑

3M/4<m≤M

φ(m)

m

(
π(M2K/3; m,1)− π(M2K/4; m,1)− li(M2K/3)− li(M2K/4)

φ(m)

)
.

The sum over m in (6.2) is

∑
3M/4<m≤M

li(M2K/3)− li(M2K/4)

m



∑
3M/4<m≤M

M2K

M log(M2K)

 M2K

log K
.

It is in this step that we require that the interval (3M/4,M] contains an integer. Further-

more, we have

|E | ≤
∑

3M/4<m≤M

∣∣∣∣π(M2K/4; m,1)− π(M2K/3; m,1)− li(M2K/3)− li(M2K/4)

φ(m)

∣∣∣∣
	 M2K

log2
(M2K)

,

by Lemma 3.4. Combining the above estimates, we find that there is an absolute constant

c such that

#S(M, K)≥ cMK + O
(

MK

log K

)
≥ cMK

2
,

provided that K is large enough. This completes the proof of Theorem 1.6.
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